A
AgentSkill
SkillsAbout
A

AgentSkill

ยฉ 2025

Not affiliated with Anthropic

Back to Skills

Multi_mcp

Multi-Model chat, code review and analysis MCP Server for Claude Code

ai-ml
religa
5
1
Updated Dec 15, 2025
agentsaiai-agentsai-agents-cliai-code-reviewanthropicclaudeclaude-commandsclaude-mcpclaude-skillscode-analysisdeveloper-toolsgeminillmllm-orchestrationmcpmcp-agentmulti-agentmulti-modelopenai
View on GitHub

Installation

git clone https://github.com/religa/multi_mcp ~/.claude/skills/multi-mcp

SKILL.md

# Multi-MCP: Multi-Model Code Review and Analysis MCP Server for Claude Code

[![CI](https://github.com/religa/multi_mcp/workflows/CI/badge.svg)](https://github.com/religa/multi_mcp/actions)
[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Python 3.11+](https://img.shields.io/badge/python-3.11+-blue.svg)](https://www.python.org/downloads/)

A **multi-model AI orchestration MCP server** for **automated code review** and **LLM-powered analysis**. Multi-MCP integrates with **Claude Code CLI** to orchestrate multiple AI models (OpenAI GPT, Anthropic Claude, Google Gemini) for **code quality checks**, **security analysis** (OWASP Top 10), and **multi-agent consensus**. Built on the **Model Context Protocol (MCP)**, this tool enables Python developers and DevOps teams to automate code reviews with AI-powered insights directly in their development workflow.

![Demo Video](https://github.com/user-attachments/assets/39c3f100-e20d-4c3d-8130-b01c401f2d29)

## Features

- **๐Ÿ” Code Review** - Systematic workflow with OWASP Top 10 security checks and performance analysis
- **๐Ÿ’ฌ Chat** - Interactive development assistance with repository context awareness
- **๐Ÿ”„ Compare** - Parallel multi-model analysis for architectural decisions
- **๐ŸŽญ Debate** - Multi-agent consensus workflow (independent answers + critique)
- **๐Ÿค– Multi-Model Support** - OpenAI GPT, Anthropic Claude, Google Gemini, and OpenRouter
- **๐Ÿ–ฅ๏ธ CLI & API Models** - Mix CLI-based (Gemini CLI, Codex CLI) and API models
- **๐Ÿท๏ธ Model Aliases** - Use short names like `mini`, `sonnet`, `gemini`
- **๐Ÿงต Threading** - Maintain context across multi-step reviews

## How It Works

Multi-MCP acts as an **MCP server** that Claude Code connects to, providing AI-powered code analysis tools:

1. **Install** the MCP server and configure your AI model API keys
2. **Integrate** with Claude Code CLI automatically via `make install`
3. **Invoke** tools using natural language (e.g., "multi codereview this file")
4. **Get Results** from multiple AI models orchestrated in parallel

## Performance

**Fast Multi-Model Analysis:**
- โšก **Parallel Execution** - 3 models in ~10s (vs ~30s sequential)
- ๐Ÿ”„ **Async Architecture** - Non-blocking Python asyncio
- ๐Ÿ’พ **Conversation Threading** - Maintains context across multi-step reviews
- ๐Ÿ“Š **Low Latency** - Response time = slowest model, not sum of all models

## Quick Start

**Prerequisites:**
- Python 3.11+
- [uv package manager](https://github.com/astral-sh/uv)
- API key for at least one provider (OpenAI, Anthropic, Google, or OpenRouter)

**Installation:**

```bash
# Clone and install
git clone https://github.com/religa/multi_mcp.git
cd multi_mcp
make install

# The installer will:
# 1. Install dependencies (uv sync)
# 2. Generate your .env file
# 3. Automatically add to Claude Code config (requires jq)
# 4. Test the installation
```

After installation, restart Claude Code and type `/multi` to see available commands.

## Configuration

**Environment Configuration:**

Edit `.env` with your API keys:

```bash
# API Keys (configure at least one)
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
GEMINI_API_KEY=...
OPENROUTER_API_KEY=sk-or-...

# Model Configuration
DEFAULT_MODEL=gpt-5-mini
DEFAULT_MODEL_LIST=gpt-5-mini,gemini-2.5-flash
```

## Usage Examples

Once installed in Claude Code, you can use these commands:

**๐Ÿ’ฌ Chat** - Interactive development assistance:
```
Can you ask Multi chat what's the answer to life, universe and everything?
```

**๐Ÿ” Code Review** - Analyze code with specific models:
```
Can you multi codereview this module for code quality and maintainability using gemini-3 and codex?
```

**๐Ÿ”„ Compare** - Get multiple perspectives (uses default models):
```
Can you multi compare the best state management approach for this React app?
```

**๐ŸŽญ Debate** - Deep analysis with critique:
```
Can you multi debate the best project code name for this project?
```

## Enabling Allowlist

Edit `~/.claude/settings.json` and add the following lines to `permissions.allow` to enable Claude Code to use Multi MCP without blocking for user permission:

```json
{
  "permissions": {
    "allow": [
      ...
      "mcp__multi__chat",
      "mcp__multi__codereview",
      "mcp__multi__compare",
      "mcp__multi__debate",
      "mcp__multi__models"
    ],
  },
  "env": {
    "MCP_TIMEOUT": "300000",
    "MCP_TOOL_TIMEOUT": "300000"
  },
}
```

## Model Aliases

Use short aliases instead of full model names:

| Alias | Model | Provider |
|-------|-------|----------|
| `mini` | gpt-5-mini | OpenAI |
| `sonnet` | claude-sonnet-4.5 | Anthropic |
| `gpt` | gpt-5.1 | OpenAI |
| `gemini` | gemini-3-pro-preview | Google |
| `flash` | gemini-2.5-flash | Google |

## CLI Models

Multi-MCP can execute **CLI-based AI models** (like Gemini CLI or Codex CLI) alongside API models. CLI models run as subprocesses and work seamlessly with all existing tools.

**Benefits:**
- Use models with full tool access (file operations, shell commands)
- Mix API and CLI models in `compare` and `debate` workflows
- Leverage local CLIs without API overhead

**Configuration:**

CLI models are defined in `multi_mcp/config/config.yaml` with `provider: cli`:

```yaml
gemini-cli:
  provider: cli
  cli_command: gemini
  cli_args:
    - "-o"
    - "json"
    - "--yolo"
  cli_env:
    GEMINI_API_KEY: "${GEMINI_API_KEY}"
  cli_parser: json
  aliases:
    - gem-cli
  notes: "Gemini CLI with full tool access"

codex-cli:
  provider: cli
  cli_command: codex
  cli_args:
    - "exec"
    - "--json"
    - "--dangerously-bypass-approvals-and-sandbox"
  cli_env: {}
  cli_parser: jsonl
  aliases:
    - cx-cli
  notes: "Codex CLI with full tool access"
```

**Prerequisites:**

CLI models require the respective CLI tools to be installed:

```bash
# Install Gemini CLI
pip install google-generativeai-cli

# Install Codex CLI (Claude Code CLI)
npm install -g @anthropics/codex-cli
```

## CLI Usage (Experimental)

Multi-MCP includes a standalone CLI for code review without needing an MCP client.

โš ๏ธ **Note:** The CLI is experimental and under active development.

```bash
# Review a directory
multi src/

# Review specific files
multi src/server.py src/config.py

# Use a different model
multi --model mini src/

# JSON output for CI/pipelines
multi --json src/ > results.json

# Verbose logging
multi -v src/

# Specify project root (for CLAUDE.md loading)
multi --base-path /path/to/project src/
```

## Why Multi-MCP?

| Feature | Multi-MCP | Single-Model Tools |
|---------|-----------|-------------------|
| Parallel model execution | โœ… | โŒ |
| Multi-model consensus | โœ… | Varies |
| Model debates | โœ… | โŒ |
| CLI + API model support | โœ… | โŒ |
| OWASP security analysis | โœ… | Varies |


## Troubleshooting

**"No API key found"**
- Add at least one API key to your `.env` file
- Verify it's loaded: `uv run python -c "from multi_mcp.settings import settings; print(settings.openai_api_key)"`

**Integration tests fail**
- Set `RUN_E2E=1` environment variable
- Verify API keys are valid and have sufficient credits

**Debug mode:**
```bash
export LOG_LEVEL=DEBUG # INFO is default
uv run python -m multi_mcp.server
```

Check logs in `logs/server.log` for detailed information.

## FAQ

**Q: Do I need all three AI providers?**
A: No, just one API key (OpenAI, Anthropic, or Google) is enough to get started.

**Q: Does it truly run in parallel?**
A: Yes! When you use `codereview`, `compare` or `debate` tools, all models are executed concurrently using Python's `asyncio.gather()`. This means you get responses from multiple models in the time it takes for the slowest model to respond, not the sum of all response times.

**Q: How many models can I run at the same time?**
A: There's no hard limit! You can run as many models as you want in parallel. In practice, 2-5 models work well for most use cases. All tools use your configured default models (typically 2-3), but you can specify any number of models you want.

## Contributing

We welcome contributions! See [CONTRIBUTING.md](CONTRIBUTING.md) for:
- Development setup
- Code standards
- Testing guidelines
- Pull request process

**Quick start:**
```bash
git clone https://github.com/YOUR_USERNAME/multi_mcp.git
cd multi_mcp
uv sync --extra dev
make check && make test
```

## License

MIT License - see LICENSE file for details

## Links

- [Issue Tracker](https://github.com/religa/multi_mcp/issues)
- [Contributing Guide](CONTRIBUTING.md)