A
AgentSkill
SkillsAbout
A

AgentSkill

Β© 2025

Not affiliated with Anthropic

Back to Skills

AI Research

Comprehensive open-source library of AI research and engineering skills for any AI model. Package the skills and your claude code/codex/gemini agent will be an AI research agent with full horsepower.

ai-ml
zechenzhangAGI
343
22
Updated Dec 14, 2025
aiai-researchclaudeclaude-codeclaude-skillscodexgeminigpt-5grpohuggingfacemachine-leanringmegatronskillsvllm
View on GitHub

Installation

git clone https://github.com/zechenzhangAGI/AI-research-SKILLs ~/.claude/skills/ai-research

SKILL.md

# AI Research Engineering `Skills` Library

> **The most comprehensive open-source library of AI research engineering skills for AI agents**

[![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT)
[![Blog Post](https://img.shields.io/badge/Blog-Read%20More-orange.svg)](https://www.orchestra-research.com/perspectives/ai-research-skills)
[![Demo](https://img.shields.io/badge/Demo-LLM%20Fine--Tuning-blue.svg)](https://www.orchestra-research.com/perspectives/LLM-with-Orchestra)

## Table of Contents

- [Our Mission](#our-mission)
- [Path Towards AI Research Agent](#path-towards-ai-research-agent)
- [Available AI Research Engineering Skills](#available-ai-research-engineering-skills) 
- [Demo](#demo)
- [Skill Structure](#skill-structure)
- [Roadmap](#roadmap)
- [Repository Structure](#repository-structure)
- [Use Cases](#use-cases)


## Our Mission

We provide the layer of **Engineering Ability** that **enable your coding agent to write conduct AI research experiments**, including preparing datasets, executing training pipelines, deploying models, and validating scientific hypotheses.
<p align="center">
  <img src="docs/skills.png" alt="AI Research Agent System" width="50%">
  <br>
  <em>System diagram of an AI research agent</em>
</p>

## Path Towards AI Research Agent

Modern AI research requires mastering dozens of specialized tools and frameworks. 
AI Researchers spend more time debugging infrastructure than testing hypothesesβ€”slowing the pace of scientific discovery. 
We provide a comprehensive library of expert-level research engineering skills that enable AI agents to autonomously implement and execute different stages of AI research experimentsβ€”from data preparation and model training to evaluation and deployment.
  - Specialized Expertise - Each skill provides deep, production-ready knowledge of a specific framework (Megatron-LM, vLLM, TRL, etc.)
  - End-to-End Coverage - 70 skills spanning model architecture, tokenization, fine-tuning, data processing, post-training, distributed training, optimization, inference, infrastructure, agents, RAG, multimodal, prompt engineering, MLOps, observability, and emerging techniques
  - Research-Grade Quality - Documentation sourced from official repos, real GitHub issues, and battle-tested production workflows

## Available AI Research Engineering Skills  

**Quality over quantity**: Each skill provides comprehensive, expert-level guidance with real code examples, troubleshooting guides, and production-ready workflows.

### πŸ“¦ Install from Marketplace

Install individual skills directly from the marketplace using the Claude Code CLI:

```bash
# Install a single skill
/plugin install skill-name@ai-research-skills

# Examples:
/plugin install serving-llms-vllm@ai-research-skills
/plugin install grpo-rl-training@ai-research-skills
/plugin install langchain@ai-research-skills
```

### πŸ—οΈ Model Architecture (5 skills)
- **[LitGPT](01-model-architecture/litgpt/)** - Lightning AI's 20+ clean LLM implementations with production training recipes (462 lines + 4 refs)
- **[Mamba](01-model-architecture/mamba/)** - State-space models with O(n) complexity, 5Γ— faster than Transformers (253 lines + 3 refs)
- **[RWKV](01-model-architecture/rwkv/)** - RNN+Transformer hybrid, infinite context, Linux Foundation project (253 lines + 3 refs)
- **[NanoGPT](01-model-architecture/nanogpt/)** - Educational GPT in ~300 lines by Karpathy (283 lines + 3 refs)

### πŸ”€ Tokenization (2 skills)
- **[HuggingFace Tokenizers](02-tokenization/huggingface-tokenizers/)** - Rust-based, <20s/GB, BPE/WordPiece/Unigram algorithms (486 lines + 4 refs)
- **[SentencePiece](02-tokenization/sentencepiece/)** - Language-independent, 50k sentences/sec, used by T5/ALBERT (228 lines + 2 refs)

### 🎯 Fine-Tuning (4 skills)
- **[Axolotl](03-fine-tuning/axolotl/)** - YAML-based fine-tuning with 100+ models (156 lines + 4 refs)
- **[LLaMA-Factory](03-fine-tuning/llama-factory/)** - WebUI no-code fine-tuning (78 lines + 5 refs)
- **[Unsloth](03-fine-tuning/unsloth/)** - 2x faster QLoRA fine-tuning (75 lines + 4 refs)
- **[PEFT](03-fine-tuning/peft/)** - Parameter-efficient fine-tuning with LoRA, QLoRA, DoRA, 25+ methods (431 lines + 2 refs)

### πŸ“Š Data Processing (2 skills)
- **[Ray Data](05-data-processing/ray-data/)** - Distributed ML data processing, streaming execution, GPU support (318 lines + 2 refs)
- **[NeMo Curator](05-data-processing/nemo-curator/)** - GPU-accelerated data curation, 16Γ— faster deduplication (375 lines + 2 refs)

### πŸŽ“ Post-Training (4 skills)
- **[TRL Fine-Tuning](06-post-training/trl-fine-tuning/)** - Transformer Reinforcement Learning (447 lines + 4 refs)
- **[GRPO-RL-Training](06-post-training/grpo-rl-training/)** (TRL) - Group Relative Policy Optimization with TRL (569 lines, **gold standard**)
- **[OpenRLHF](06-post-training/openrlhf/)** - Full RLHF pipeline with Ray + vLLM (241 lines + 4 refs)
- **[SimPO](06-post-training/simpo/)** - Simple Preference Optimization, no reference model needed (211 lines + 3 refs)

### πŸ›‘οΈ Safety & Alignment (3 skills)
- **[Constitutional AI](07-safety-alignment/constitutional-ai/)** - AI-driven self-improvement via principles (282 lines)
- **[LlamaGuard](07-safety-alignment/llamaguard/)** - Safety classifier for LLM inputs/outputs (329 lines)
- **[NeMo Guardrails](07-safety-alignment/nemo-guardrails/)** - Programmable guardrails with Colang (289 lines)

### ⚑ Distributed Training (5 skills)
- **[Megatron-Core](01-model-architecture/megatron-core/)** - NVIDIA's framework for training 2B-462B param models with 47% MFU on H100 (359 lines + 4 refs)
- **[DeepSpeed](08-distributed-training/deepspeed/)** - Microsoft's ZeRO optimization (137 lines + 9 refs)
- **[PyTorch FSDP](08-distributed-training/pytorch-fsdp/)** - Fully Sharded Data Parallel (124 lines + 2 refs)
- **[Accelerate](08-distributed-training/accelerate/)** - HuggingFace's 4-line distributed training API (324 lines + 3 refs)
- **[PyTorch Lightning](08-distributed-training/pytorch-lightning/)** - High-level training framework with Trainer class (339 lines + 3 refs)
- **[Ray Train](08-distributed-training/ray-train/)** - Multi-node orchestration and hyperparameter tuning (399 lines + 1 ref)

### πŸš€ Optimization (6 skills)
- **[Flash Attention](10-optimization/flash-attention/)** - 2-4x faster attention with memory efficiency (359 lines + 2 refs)
- **[bitsandbytes](10-optimization/bitsandbytes/)** - 8-bit/4-bit quantization for 50-75% memory reduction (403 lines + 3 refs)
- **[GPTQ](10-optimization/gptq/)** - 4-bit post-training quantization, 4Γ— memory reduction, <2% accuracy loss (443 lines + 3 refs)
- **[AWQ](10-optimization/awq/)** - Activation-aware weight quantization, 4-bit with minimal accuracy loss (310 lines + 2 refs)
- **[HQQ](10-optimization/hqq/)** - Half-Quadratic Quantization, no calibration data needed, multi-backend (370 lines + 2 refs)
- **[GGUF](10-optimization/gguf/)** - llama.cpp quantization format, K-quant methods, CPU/Metal inference (380 lines + 2 refs)

### πŸ“Š Evaluation (1 skill)
- **[lm-evaluation-harness](11-evaluation/lm-evaluation-harness/)** - EleutherAI's standard for benchmarking LLMs across 60+ tasks (482 lines + 4 refs)

### ☁️ Infrastructure (3 skills)
- **[Modal](09-infrastructure/modal/)** - Serverless GPU cloud with Python-native API, T4-H200 on-demand (342 lines + 2 refs)
- **[SkyPilot](09-infrastructure/skypilot/)** - Multi-cloud orchestration across 20+ providers with spot recovery (390 lines + 2 refs)
- **[Lambda Labs](09-infrastructure/lambda-labs/)** - Reserved/on-demand GPU cloud with H100/A100, persistent filesystems (390 lines + 2 refs)

### πŸ”₯ Inference & Serving (4 skills)
- **[vLLM](12-inference-serving/vllm/)** - High-throughput LLM serving with PagedAttention (356 lines + 4 refs, **production-ready**)
- **[TensorRT-LLM](12-inference-serving/tensorrt-llm/)** - NVIDIA's fastest inference, 24k tok/s, FP8/INT4 quantization (180 lines + 3 refs)
- **[llama.cpp](12-inference-serving/llama-cpp/)** - CPU/Apple Silicon inference, GGUF quantization (251 lines + 3 refs)
- **[SGLang](12-inference-serving/sglang/)** - Structured generation with RadixAttention, 5-10Γ— faster for agents (435 lines + 3 refs)

### πŸ€– Agents (4 skills)
- **[LangChain](14-agents/langchain/)** - Most popular agent framework, 500+ integrations, ReAct pattern (658 lines + 3 refs, **production-ready**)
- **[LlamaIndex](14-agents/llamaindex/)** - Data framework for LLM apps, 300+ connectors, RAG-focused (535 lines + 3 refs)
- **[CrewAI](14-agents/crewai/)** - Multi-agent orchestration, role-based collaboration, autonomous workflows (498 lines + 3 refs)
- **[AutoGPT](14-agents/autogpt/)** - Autonomous AI agent platform, visual workflow builder, continuous execution (400 lines + 2 refs)

### πŸ” RAG (5 skills)
- **[Chroma](15-rag/chroma/)** - Open-source embedding database, local/cloud, 24k stars (385 lines + 1 ref)
- **[FAISS](15-rag/faiss/)** - Facebook's similarity search, billion-scale, GPU acceleration (295 lines)
- **[Sentence Transformers](15-rag/sentence-transformers/)** - 5000+ embedding models, multilingual, 15k stars (370 lines)
- **[Pinecone](15-rag/pinecone/)** - Managed vector database, auto-scaling, <100ms latency (410 lines)
- **[Qdrant](15-rag/qdrant/)** - High-performance vector search, Rust-powered, hybrid search with filtering (493 lines + 2 refs)

### 🎨 Multimodal (7 skills)
- **[CLIP](18-multimodal/clip/)** - OpenAI's vision-language model, zero-shot classification, 25k stars (320 lines)
- **[Whisper](18-multimodal/whisper/)** - Robust speech recognition, 99 languages, 73k stars (395 lines)
- **[LLaVA](18-multimodal/llava/)** - Vision-language assistant, image chat, GPT-4V level (360 lines)
- **[Stable Diffusion](18-multimodal/stable-diffusion/)** - Text-to-image generation via HuggingFace Diffusers, SDXL, ControlNet (380 lines + 2 refs)
- **[Segment Anything](18-multimodal/segment-anything/)** - Meta's SAM for zero-shot image segmentation with points/boxes (500 lines + 2 refs)
- **[BLIP-2](18-multimodal/blip-2/)** - Vision-language pretraining with Q-Former, image captioning, VQA (500 lines + 2 refs)
- **[AudioCraft](18-multimodal/audiocraft/)** - Meta's MusicGen/AudioGen for text-to-music and text-to-sound (470 lines + 2 refs)

### 🎯 Prompt Engineering (4 skills)
- **[DSPy](16-prompt-engineering/dspy/)** - Declarative prompt programming with optimizers, Stanford NLP, 22k stars (438 lines + 3 refs)
- **[Instructor](16-prompt-engineering/instructor/)** - Structured LLM outputs with Pydantic validation, 15k stars (726 lines + 3 refs)
- **[Guidance](16-prompt-engineering/guidance/)** - Constrained generation with regex/grammars, Microsoft Research, 18k stars (485 lines + 3 refs)
- **[Outlines](16-prompt-engineering/outlines/)** - Structured text with FSM, zero-overhead, 8k stars (601 lines + 3 refs)

### πŸ“Š MLOps (3 skills)
- **[Weights & Biases](13-mlops/weights-and-biases/)** - Experiment tracking, sweeps, artifacts, model registry (427 lines + 3 refs)
- **[MLflow](13-mlops/mlflow/)** - Model registry, tracking, deployment, autologging (514 lines + 3 refs)
- **[TensorBoard](13-mlops/tensorboard/)** - Visualization, profiling, embeddings, scalars/images (538 lines + 3 refs)

### πŸ‘οΈ Observability (2 skills)
- **[LangSmith](17-observability/langsmith/)** - LLM observability, tracing, evaluation, monitoring for AI apps (422 lines + 2 refs)
- **[Phoenix](17-observability/phoenix/)** - Open-source AI observability with OpenTelemetry tracing and LLM evaluation (380 lines + 2 refs)

### πŸ”¬ Emerging Techniques (6 skills)
- **[MoE Training](19-emerging-techniques/moe-training/)** - Mixture of Experts training with DeepSpeed, Mixtral 8x7B, 5Γ— cost reduction (515 lines + 3 refs)
- **[Model Merging](19-emerging-techniques/model-merging/)** - Combine models with TIES, DARE, SLERP using mergekit (528 lines + 3 refs)
- **[Long Context](19-emerging-techniques/long-context/)** - Extend context windows with RoPE, YaRN, ALiBi, 32k-128k tokens (624 lines + 3 refs)
- **[Speculative Decoding](19-emerging-techniques/speculative-decoding/)** - 1.5-3.6Γ— faster inference with Medusa, Lookahead (379 lines)
- **[Knowledge Distillation](19-emerging-techniques/knowledge-distillation/)** - Compress models 70B→7B with MiniLLM, temperature scaling (424 lines)
- **[Model Pruning](19-emerging-techniques/model-pruning/)** - 50% sparsity with Wanda, SparseGPT, <1% accuracy loss (417 lines)
 

**Available skills in Claude marketplace** (70 total):
| Category | Skills |
|----------|--------|
| Model Architecture | `implementing-llms-litgpt`, `mamba-architecture`, `nanogpt`, `rwkv-architecture` |
| Tokenization | `huggingface-tokenizers`, `sentencepiece` |
| Fine-Tuning | `axolotl`, `llama-factory`, `peft-fine-tuning`, `unsloth` |
| Data Processing | `nemo-curator`, `ray-data` |
| Post-Training | `grpo-rl-training`, `openrlhf-training`, `simpo-training`, `fine-tuning-with-trl` |
| Safety | `constitutional-ai`, `llamaguard`, `nemo-guardrails` |
| Distributed Training | `huggingface-accelerate`, `deepspeed`, `training-llms-megatron`, `pytorch-fsdp`, `pytorch-lightning`, `ray-train` |
| Infrastructure | `lambda-labs-gpu-cloud`, `modal-serverless-gpu`, `skypilot-multi-cloud-orchestration` |
| Optimization | `awq-quantization`, `quantizing-models-bitsandbytes`, `optimizing-attention-flash`, `gguf-quantization`, `gptq`, `hqq-quantization` |
| Evaluation | `evaluating-llms-harness` |
| Inference | `llama-cpp`, `sglang`, `tensorrt-llm`, `serving-llms-vllm` |
| MLOps | `mlflow`, `tensorboard`, `weights-and-biases` |
| Agents | `autogpt-agents`, `crewai-multi-agent`, `langchain`, `llamaindex` |
| RAG | `chroma`, `faiss`, `pinecone`, `qdrant-vector-search`, `sentence-transformers` |
| Prompt Engineering | `dspy`, `guidance`, `instructor`, `outlines` |
| Observability | `langsmith-observability`, `phoenix-observability` |
| Multimodal | `audiocraft-audio-generation`, `blip-2-vision-language`, `clip`, `llava`, `segment-anything-model`, `stable-diffusion-image-generation`, `whisper` |
| Emerging Techniques | `knowledge-distillation`, `long-context`, `model-merging`, `model-pruning`, `moe-training`, `speculative-decoding` |

## Demo

All 70 skills in this repo are automatically synced to [Orchestra Research](https://www.orchestra-research.com/research-skills), where you can add them to your projects with one click and use them with AI research agents.

**[Demo](https://www.orchestra-research.com/perspectives/LLM-with-Orchestra)**: With this `skills`, a physics PhD is able to [reproduce](https://www.orchestra-research.com/perspectives/LLM-with-Orchestra) Thinking Machines Lab's "LoRA Without Regret" findings. 
The Orchestra agent autonomously wrote training code using TRL, provisioned H100 GPUs, ran GRPO experiments overnight, and generated publication-ready analysis, successfully validating that rank=16 LoRA achieves 99.4% of rank=256's SFT performance and that rank=1 LoRA outperforms full fine-tuning on RL tasks (52.1% vs 33.3% on GSM8k math reasoning). ([Video demo](https://www.youtube.com/watch?v=X0DoLYfXl5I))

**Note**: When you contribute a skill to this repo via PR, it automatically syncs to the Orchestra marketplace after merge.

### πŸ› οΈ Alternative Usage Methods

**For Claude Users** (Claude.ai, Claude Code):
```bash
# 1. Download skill folder
cd 01-model-architecture/litgpt

# 2. Use directly in Claude Code workspace
# OR zip and upload to Claude.ai Projects
zip -r litgpt-skill.zip SKILL.md references/
```

**For Other AI Coding Assistants**:
- **Gemini CLI**: Point to skill directory in your workspace
- **Grok Code**: Use skill folder as context
- **Cursor/Windsurf**: Add skill folder to project knowledge

**For Custom RAG/Agent Systems**:
- Ingest `SKILL.md` + `references/` into your knowledge base
- Use as retrieval context for specialized queries
- Build domain-specific agents with curated skill subsets
 
### πŸ‘¨β€πŸ’» For Skill Creators

**Your contributions power the entire ecosystem!** When you contribute a skill to this repo:
1. It automatically syncs to [Orchestra marketplace](https://www.orchestra-research.com/research-skills)
2. Thousands of researchers can use your expertise
3. AI agents become more capable at conducting research

**Getting started**:
1. **Read [CONTRIBUTING.md](CONTRIBUTING.md)** - Step-by-step guide
2. **Use [SKILL_TEMPLATE.md](SKILL_TEMPLATE.md)** - Copy-paste scaffold
3. **Run validation**: `python scripts/validate_skill.py your-skill/`
4. **Submit PR** - We review within 48 hours, auto-publish to Orchestra on merge

## Skill Structure

Each skill follows a battle-tested format for maximum usefulness:

```
skill-name/
β”œβ”€β”€ SKILL.md                    # Quick reference (50-150 lines)
β”‚   β”œβ”€β”€ Metadata (name, description, version)
β”‚   β”œβ”€β”€ When to use this skill
β”‚   β”œβ”€β”€ Quick patterns & examples
β”‚   └── Links to references
β”‚
β”œβ”€β”€ references/                 # Deep documentation (300KB+)
β”‚   β”œβ”€β”€ README.md              # From GitHub/official docs
β”‚   β”œβ”€β”€ api.md                 # API reference
β”‚   β”œβ”€β”€ tutorials.md           # Step-by-step guides
β”‚   β”œβ”€β”€ issues.md              # Real GitHub issues & solutions
β”‚   β”œβ”€β”€ releases.md            # Version history & breaking changes
β”‚   └── file_structure.md      # Codebase navigation
β”‚
β”œβ”€β”€ scripts/                    # Helper scripts (optional)
└── assets/                     # Templates & examples (optional)
```

<details>
<summary><b>Quality Standards</b></summary>

- 300KB+ documentation from official sources
- Real GitHub issues & solutions (when available)
- Code examples with language detection
- Version history & breaking changes
- Links to official docs

</details>

## Roadmap

We're building towards 70 comprehensive skills across the full AI research lifecycle. See our [detailed roadmap](ROADMAP.md) for the complete development plan.
 
[View Full Roadmap β†’](ROADMAP.md)

<details>
<summary><b>View Detailed Statistics</b></summary>

| Metric | Current | Target |
|--------|---------|--------|
| **Skills** | **70** (high-quality, standardized YAML) | 70 βœ… |
| **Avg Lines/Skill** | **420 lines** (focused + progressive disclosure) | 200-600 lines |
| **Documentation** | **~115,000 lines** total (SKILL.md + references) | 100,000+ lines |
| **Gold Standard Skills** | **58** with comprehensive references | 50+ |
| **Contributors** | 1 | 100+ |
| **Coverage** | Architecture, Tokenization, Fine-Tuning, Data Processing, Post-Training, Safety, Distributed, Optimization, Evaluation, Infrastructure, Inference, Agents, RAG, Multimodal, Prompt Engineering, MLOps, Observability | Full Lifecycle βœ… |

**Recent Progress**: +4 skills (Lambda Labs, SAM, BLIP-2, AudioCraft) completing the 70-skill roadmap with GPU cloud and extended multimodal capabilities

**Philosophy**: Quality > Quantity. Following [Anthropic official best practices](anthropic_official_docs/best_practices.md) - each skill provides 200-500 lines of focused, actionable guidance with progressive disclosure.

</details>



## Repository Structure

```
claude-ai-research-skills/
β”œβ”€β”€ README.md                    ← You are here
β”œβ”€β”€ CONTRIBUTING.md              ← Contribution guide
β”œβ”€β”€ SKILL_TEMPLATE.md            ← Skill scaffold
β”œβ”€β”€ ROADMAP.md                   ← Development roadmap
β”‚
β”œβ”€β”€ 01-model-architecture/       (5 skills βœ“ - Megatron, LitGPT, Mamba, RWKV, NanoGPT)
β”œβ”€β”€ 02-tokenization/             (2 skills βœ“ - HuggingFace Tokenizers, SentencePiece)
β”œβ”€β”€ 03-fine-tuning/              (4 skills βœ“ - Axolotl, LLaMA-Factory, Unsloth, PEFT)
β”œβ”€β”€ 05-data-processing/          (2 skills βœ“ - Ray Data, NeMo Curator)
β”œβ”€β”€ 06-post-training/            (4 skills βœ“ - TRL, GRPO, OpenRLHF, SimPO)
β”œβ”€β”€ 07-safety-alignment/         (3 skills βœ“ - Constitutional AI, LlamaGuard, NeMo Guardrails)
β”œβ”€β”€ 08-distributed-training/     (5 skills βœ“ - DeepSpeed, FSDP, Accelerate, Lightning, Ray Train)
β”œβ”€β”€ 09-infrastructure/           (3 skills βœ“ - Modal, SkyPilot, Lambda Labs)
β”œβ”€β”€ 10-optimization/             (6 skills βœ“ - Flash Attention, bitsandbytes, GPTQ, AWQ, HQQ, GGUF)
β”œβ”€β”€ 11-evaluation/               (1 skill βœ“ - lm-evaluation-harness)
β”œβ”€β”€ 12-inference-serving/        (4 skills βœ“ - vLLM, TensorRT-LLM, llama.cpp, SGLang)
β”œβ”€β”€ 13-mlops/                    (3 skills βœ“ - Weights & Biases, MLflow, TensorBoard)
β”œβ”€β”€ 14-agents/                   (4 skills βœ“ - LangChain, LlamaIndex, CrewAI, AutoGPT)
β”œβ”€β”€ 15-rag/                      (5 skills βœ“ - Chroma, FAISS, Sentence Transformers, Pinecone, Qdrant)
β”œβ”€β”€ 16-prompt-engineering/       (4 skills βœ“ - DSPy, Instructor, Guidance, Outlines)
β”œβ”€β”€ 17-observability/            (2 skills βœ“ - LangSmith, Phoenix)
β”œβ”€β”€ 18-multimodal/               (7 skills βœ“ - CLIP, Whisper, LLaVA, Stable Diffusion, SAM, BLIP-2, AudioCraft)
└── 19-emerging-techniques/      (6 skills βœ“ - MoE, Model Merging, Long Context, Speculative Decoding, Distillation, Pruning)
```

## Use Cases

### For Researchers
"I need to fine-tune Llama 3 with custom data"
β†’ **03-fine-tuning/axolotl/** - YAML configs, 100+ model support

### For ML Engineers
"How do I optimize inference latency?"
β†’ **12-inference-serving/vllm/** - PagedAttention, batching

### For Students
"I want to learn how transformers work"
β†’ **01-model-architecture/litgpt/** - Clean implementations

### For Teams
"We need to scale training to 100 GPUs"
β†’ **08-distributed-training/deepspeed/** - ZeRO stages, 3D parallelism

## License

MIT License - See [LICENSE](LICENSE) for details.

**Note**: Individual skills may reference libraries with different licenses. Please check each project's license before use.

## Acknowledgments

Built with:
- **[Claude Code](https://www.claude.com/product/claude-code)** - AI pair programming
- **[Skill Seeker](https://github.com/yusufkaraaslan/Skill_Seekers)** - Automated doc scraping
- **Open Source AI Community** - For amazing tools and docs

Special thanks to:
- EleutherAI, HuggingFace, NVIDIA, Lightning AI, Meta AI, Anthropic
- All researchers who maintain excellent documentation


## Contributing

We welcome contributions from the AI research community! See [CONTRIBUTING.md](CONTRIBUTING.md) for detailed guidelines on:

- Adding new skills
- Improving existing skills
- Quality standards and best practices
- Submission process

All contributors are featured in our [Contributors Hall of Fame](CONTRIBUTORS.md) 🌟
 

## Recent Updates

<details>
<summary><b>November 25, 2025 - v0.10.0 πŸŽ‰ 70 Skills Complete!</b></summary>

- πŸŽ‰ **ROADMAP COMPLETE**: Reached 70-skill milestone!
- πŸš€ Added 4 skills: Lambda Labs, Segment Anything (SAM), BLIP-2, AudioCraft
- ☁️ Lambda Labs skill: Reserved/on-demand GPU cloud with H100/A100, persistent filesystems, 1-Click Clusters
- πŸ–ΌοΈ SAM skill: Meta's Segment Anything for zero-shot image segmentation with points/boxes/masks
- πŸ‘οΈ BLIP-2 skill: Vision-language pretraining with Q-Former, image captioning, VQA
- 🎡 AudioCraft skill: Meta's MusicGen/AudioGen for text-to-music and text-to-sound generation
- πŸ“ ~10,000 new lines of documentation across 12 files
- **70 total skills** (100% roadmap complete!)

</details>

<details>
<summary><b>November 25, 2025 - v0.9.0</b></summary>

- πŸš€ Added 2 infrastructure skills: Modal, SkyPilot
- ☁️ Modal skill: Serverless GPU cloud with Python-native API, T4-H200 on-demand, auto-scaling
- 🌐 SkyPilot skill: Multi-cloud orchestration across 20+ providers with spot recovery
- ✨ New Infrastructure category (2 skills - serverless GPU and multi-cloud orchestration)
- πŸ“ ~2,500 new lines of documentation across 6 files
- **66 total skills** (94% towards 70-skill target)

</details>

<details>
<summary><b>November 25, 2025 - v0.8.0</b></summary>

- πŸš€ Added 5 high-priority skills: HQQ, GGUF, Phoenix, AutoGPT, Stable Diffusion
- ⚑ HQQ skill: Half-Quadratic Quantization without calibration data, multi-backend support
- πŸ“¦ GGUF skill: llama.cpp quantization format, K-quant methods, CPU/Metal inference
- πŸ‘οΈ Phoenix skill: Open-source AI observability with OpenTelemetry tracing and LLM evaluation
- πŸ€– AutoGPT skill: Autonomous AI agent platform with visual workflow builder
- 🎨 Stable Diffusion skill: Text-to-image generation via Diffusers, SDXL, ControlNet, LoRA
- πŸ“ ~9,000 new lines of documentation across 15 files
- **64 total skills** (91% towards 70-skill target)

</details>

<details>
<summary><b>November 25, 2025 - v0.7.0</b></summary>

- πŸš€ Added 5 high-priority skills: PEFT, CrewAI, Qdrant, AWQ, LangSmith
- ✨ New Observability category with LangSmith for LLM tracing and evaluation
- 🎯 PEFT skill: Parameter-efficient fine-tuning with LoRA, QLoRA, DoRA, 25+ methods
- πŸ€– CrewAI skill: Multi-agent orchestration with role-based collaboration
- πŸ” Qdrant skill: High-performance Rust vector search with hybrid filtering
- ⚑ AWQ skill: Activation-aware 4-bit quantization with minimal accuracy loss
- πŸ“ ~8,000 new lines of documentation across 15 files
- **59 total skills** (84% towards 70-skill target)

</details>

<details>
<summary><b>November 15, 2025 - v0.6.0</b></summary>

- πŸ“Š Added 3 comprehensive MLOps skills: Weights & Biases, MLflow, TensorBoard
- ✨ New MLOps category (3 skills - experiment tracking, model registry, visualization)
- πŸ“ ~10,000 new lines of documentation across 13 files
- πŸ”§ Comprehensive coverage: experiment tracking, hyperparameter sweeps, model registry, profiling, embeddings visualization
- **54 total skills** (77% towards 70-skill target)

</details>

<details>
<summary><b>November 12, 2025 - v0.5.0</b></summary>

- 🎯 Added 4 comprehensive prompt engineering skills: DSPy, Instructor, Guidance, Outlines
- ✨ New Prompt Engineering category (4 skills - DSPy, Instructor, Guidance, Outlines)
- πŸ“ ~10,000 new lines of documentation across 16 files
- πŸ”§ Comprehensive coverage: declarative programming, structured outputs, constrained generation, FSM-based generation
- **47 total skills** (67% towards 70-skill target)

</details>

<details>
<summary><b>November 9, 2025 - v0.4.0</b></summary>

- πŸ€– Added 11 comprehensive skills: LangChain, LlamaIndex, Chroma, FAISS, Sentence Transformers, Pinecone, CLIP, Whisper, LLaVA
- ✨ New Agents category (2 skills - LangChain, LlamaIndex)
- πŸ” New RAG category (4 skills - Chroma, FAISS, Sentence Transformers, Pinecone)
- 🎨 New Multimodal category (3 skills - CLIP, Whisper, LLaVA)
- πŸ“ ~15,000 new lines of documentation
- **43 total skills** (61% towards 70-skill target)

</details>

<details>
<summary><b>November 8, 2025 - v0.3.0</b></summary>

- πŸš€ Added 8 comprehensive skills: TensorRT-LLM, llama.cpp, SGLang, GPTQ, HuggingFace Tokenizers, SentencePiece, Ray Data, NeMo Curator
- ⚑ Completed Inference & Serving category (4/4 skills)
- πŸ”€ New Tokenization category (2 skills)
- πŸ“Š New Data Processing category (2 skills)
- πŸ“ 9,617 new lines of documentation across 30 files
- **32 total skills** (45% towards 70-skill target)

</details>

<details>
<summary><b>November 6, 2025 - v0.2.0</b></summary>

- Added 10 skills from GitHub (Megatron-Core, Lightning, Ray Train, etc.)
- Improved skill structure with comprehensive references
- Created strategic roadmap to 70 skills
- Added contribution guidelines

</details>

<details>
<summary><b>November 3, 2025 - v0.1.0</b></summary>

- πŸŽ‰ Initial release with 5 fine-tuning skills

</details>

## Star History

<a href="https://star-history.com/#zechenzhangAGI/AI-research-SKILLs&Date">
 <picture>
   <source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=zechenzhangAGI/AI-research-SKILLs&type=Date&theme=dark" />
   <source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=zechenzhangAGI/AI-research-SKILLs&type=Date" />
   <img alt="Star History Chart" src="https://api.star-history.com/svg?repos=zechenzhangAGI/AI-research-SKILLs&type=Date" />
 </picture>
</a>